
Squinting at Power Series

Rob Pike
(after Doug McIlroy)

Computing Sciences Research Center
Bell Labs

Lucent Technologies
rob@plan9.bell-labs.com

February 3, 2000

1

Background

A summary of this amazing paper:

M. Douglas McIlroy, ‘‘Squinting at Power Series’’,
Software�Practice and Experience,
July 1990, Vol. 20, No. 7, pp. 661-683.

Building on work by Kahn and MacQueen.

Power series are infinite, so standard call-by-value
programming can’t handle them.

Idea: Channel can represent streams of data, and recurrence
relations can translate directly into compositions of streams
and processes.

Note: Our programming here is formal symbol manipulation;
no attempt to guarantee convergence of series.

2

Power Series

A power series is a stream of coefficients, with exponents
given implicitly by ordinal position. For example,

ex =
n = 0
Σ
�

n!
xn
___ = 1 + x +

2
1__ x2 +

6
1__ x3 +

24
1___ x4 + . . .

is represented as a stream of rationals:

1, 1,
2
1__ ,

6
1__ ,

24
1___ , . . .

We will label power series with capital letters, e.g.F, and use
functional formF(x) when the variable must be named.
F i represents coefficienti:

F(x) =
i = 0
Σ
�

F i x
i

The representation ofF as a channel will be in the program
font: F. We will assume the coefficients of a series are
rationals, defined by a typerat . Thus our representation of a
stream is

F: chan of rat;

3

Rationals

Declarations of necessary pieces.

type rat: struct of {
num: int;
den: int;

};
type ps: chan of rat;

ratmk: prog(i: int, j:int) of rat; # make i/j
ratadd: prog(r:rat, s:rat) of rat; # r + s
ratsub: prog(r:rat, s:rat) of rat; # r - s
ratmul: prog(r:rat, s:rat) of rat; # r * s
ratdiv: prog(r:rat, s:rat) of rat; # r / s
ratprint: prog(r: rat);

psmk: prog() of ps; # make power series

Example: print a power series
psprint := prog(F: ps) {

for(;;)
ratprint(<-F);

};

4

Warmup

An exercise to get started. The sum of two series is by
coefficient:

F(x) + G(x) =
i = 0
Σ
�

(F i + Gi) xi

This translates easily into code:
calculate power series S = F + G
do_psadd:= prog(F:ps, G:ps, S:ps) {

for(;;)
S <-= ratadd(<-F, <-G);

};

This gives us a process to do the work. But we want a
channel, so we need to wrap up the loop:

return a power series S = F + G
psadd:= prog(F:ps, G:ps) of ps {

S:= psmk();
begin prog() {

for(;;)
S <-= ratadd(<-F, <-G);

}(); # spawn nameless prog, no args
become S; # return S to caller

};

S := psadd(F, G); # to construct a sum

5

Recap

return a power series S = F + G
psadd:= prog(F:ps, G:ps) of ps {

S:= psmk();
begin prog() {

for(;;)
S <-= ratadd(<-F, <-G);

}(); # spawn nameless prog, no args
become S; # return S to caller

};

S := psadd(F, G); # to construct a sum
psprint(S); # how to print the sum
psprint(psadd(F, G)); # shorter way

To add the two power series, we must create a new process to
combine the coefficients and send the new result out a fresh
channel.
The result must be a channel, not a process, so we wrap the
copy loop in a function that creates the channel, starts the
process, and returns the channel.

6

Differentiation

Is easy! Recall

F ′ (x) =
dx
d___F(x) =

dx
d___

i = 0
Σ
�

F i x
i =

i = 1
Σ
�

i F i x
i − 1

Shifting the indices to get the right hand side in proper form,

F ′ (x) =
i = 0
Σ
�

(i + 1)F i + 1xi .

We can write this as arecurrence relationthat expresses the
elements of the new series in terms of the old one:

F ′ i = (i + 1)F i + 1

Once we know thex3 term ofF, we can calculate thex2 term
of F ′, etc.

7

Differentiation: code

Translate the recurrence into code, elementwise:
psderiv:= prog(F:ps) of ps {

D:= psmk();
begin prog() {

<-F; # discard constant term
n:= 1;
for(;;) {

f:= <-F;
D <-= ratmk(n*f.num, f.den);
n = n+1;

}
}();
become D;

};

Note the shift in indices (fromi = 0 to i = 1 in the sums,i to i + 1
in the recurrence) is accomplished by absorbing an element of
the stream.

Integration is easy too, and involves emitting an extra element.
Exercise for the reader.

8

An example

The power series for
1 − x

1______ =
i = 0
Σ
�

xi is represented by a

stream of ones,1 1 1 1 ... :
Ones:= psmk(); # the series for 1/(1− x)
begin prog() {

one:= ratmk(1, 1);
for(;;)

Ones <-= one;
}();

Its derivative is regular:
psprint(psderiv(Ones));

produces1 2 3 4 5 ... ; and givenpsxmul to multiply
by x andpscmul to multiply by a constant,

psprint(psadd(Ones,
psxmul(pscmul(ratmk(-1,1), Ones))));

printsOnes + x . (− 1) . Ones, or1 0 0 0 0
But this cheats because it depends on the elements ofOnes all
having the same value; the stream gets scattered about. We
need to control the splitting of streams.

9

Multiplication: A need for splitting streams

The product of two power seriesP = F G is challenging.
From the direct formula

n = 0
Σ
�

Pnxn =


i = 0

Σ
�

F i x
i






j = 0

Σ
�

Gj x
j




,

we can derive the familiar convolution for the product,

Pn =
i = 0
Σ
n

F i Gn − i , (1)

Miserable to program. Must storen terms. Let’s construct the
recurrence. Write a streamF as a first term plusx times
another series:

F = F 0 + x F
__

.

The tailF
__

is a power series beginning with constant, so recur:

P = F G = P0 + x P
__

= F 0 G0 + x (F 0 G
__

+ G0 F
__

) + x2 F
__

G
__

. (2)

Equate coefficients and we get first term

P0 = F 0 G0 ,

followed by tail

P
__

= F 0 G
__

+ G0 F
__

+ x F
__

G
__

.

Much simpler to program than the convolution (1).

10

Multiplication: A need for splitting (2)

It’s now easy to write the code except for a small problem.
Note that the tail of the recurrence

P
__

= F 0 G
__

+ G0 F
__

+ x F
__

G
__

hasF
__

andG
__

twice, so we mustsplit the streams forF
__

andG
__

so
each coefficient can be processed twice.

This is easy to see if we represent the recurrence by a Figure.

11

Recursive data flow for multiplication

F
__

×G
__

× x

+

F×G

×G0 ×F 0

F G

The outer box represents the process for the tail ofF G,
equation (2). The similar inner box does not receive the first
terms ofF or G, and its output does not enter into the first two
terms of the productF G. The code will use a separate process
for each box, and one or more processes for each stream
splitting.

12

Splitting

A program to split a stream must read a coefficient and deliver
it twice. But, the two values may be needed at different times,
so we must be ready for either order:

split power series F into F0 and F1
rec do_split:= prog(F:ps, F0:ps, F1:ps) {

f:= <-F;
H:= psmk(); # the held branch
select {
case F0 <-= f:

begin do_split(F, F0, H);
F1 <-= f;
become copy(H, F1);

case F1 <-= f:
same, with F0 and F1 interchanged

}
};

Copy is a trivial helper routine:
calculate power series C = F
copy:= prog(F:ps, C:ps) {

for(;;)
C <-= <-F;

};

13

Splitting (2)

Finally we encapsulate to produce the stream pair:
a pair of power series
type pspair: array[2] of ps;
pspairmk: prog(F: ps, G: ps) of pspair;

return a pair of copies of F
(consuming F)
split:= prog(F:ps) of pspair {

FF:= pspairmk(psmk(), psmk());
begin do_split(F, FF[0], FF[1]);
become FF;

};

Note we use a process to buffer each term of the partial series
until it’s needed; each split generates another process to feed
the new branch.

There is a problem with this structure, which we’ll return to,
but it works well enough to write our multiply code.

14

Multiply, at last

Now we have the tools. Here is the recurrence (2) again, as a
reminder:

P = F G = P0 + x P
__

= F 0 G0 + x (F 0 G
__

+ G0 F
__

) + x2 F
__

G
__

.

And here is the code:
return power series F*G
rec psmul:= prog(F:ps, G:ps) of ps {

P:= psmk();
begin prog(){

f := <-F;
g := <-G;
P <-= ratmul(f, g);
FF := split(F);
GG := split(G);
fG := pscmul(f, GG[0]);
gF := pscmul(g, FF[0]);
xFG := psxmul(psmul(FF[1], GG[1]));
for(;;)

P <-= ratadd(ratadd(<-fG, <-gF),
<-xFG);

}();
become P;

};

15

Some fun

A similar combination of recurrence relations and stream
processing can give us other tools, like substitution
(S = F(G(x))), reversion (R such thatF(R(x)) = x),
integration, exponentiation (very clever), etc.

Example: To compute the power series fortan(x), note that

dx
d___ arctan(x) =

1 + x2
1_______ .

Build a monomial substitution operator,psmsubst(F, c,
n) , that generatesF(cxn). It multiplies each input coefficient
F i by ci and copies it to the output followed byn − 1 zeros.
Substitute− x2 into Ones (i.e. into1/(1− x)) to get1/(1+ x2),
integrate to get the arctangent, and revert. The resulting code,

psmsubst : prog(ps, rat, int) of ps;
psrev : prog(ps) of ps; # reversion

Tan:= psrev(psinteg(psmsubst(Ones,
ratmk(-1, 1), 2), 0));

psprint(Tan);

prints the coefficients of the tangent series:
0 1 0 1/3 0 2/15 0 17/315 0 62/2835

0 1382/155925 ...

a difficult calculation by traditional means.

16

A minor problem

There was a problem we skipped during the implementation of
split . It is that the program is arunaway: it prepares to
satisfy requests for coefficients before they are required. Since
it creates processes to do this, it can get very far in front of the
calculation, consuming resources to calculate values that will
never be used.

This sort of performance problem is peculiar to concurrent
programming, but it’s easy to fix. We just need to change the
definition of a power series into apair of channels, one for
control and one for data. When a value is needed, it is
requested using the control channel, and the answer read on
the data channel. The code is simple, and is in the paper.

This is strongly analogous with lazy evaluation.

For these and other topics, a full explanation may be found in
McIlroy’s paper.

