
Introduction to Concurrent
Programming

Rob Pike
Computing Sciences Research Center

Bell Labs
Lucent Technologies

rob@plan9.bell-labs.com

February 2, 2000

1

Overview

The world runs in parallel, but our usual model of software
does not. Programming languages are sequential.
This mismatch makes it hard to write systems software that
provides the interface between a computer (or user) and the
world.
Solutions: processes, threads, concurrency, semaphores, spin
locks, message-passing. But how do we use these things?
Real problem: need an approach to writing concurrent
software that guides our design and implementation.
We will present our model for designing concurrent software.
It’s been used in several languages for over a decade,
producing everything from symbolic algebra packages to
window systems.
This course is not about parallel algorithms or using
multiprocessors to run programs faster. It is about using the
power of processes and communication to design elegant,
responsive, reliable systems.

2

History (Biased towards Systems)

Dijkstra: guarded commands, 1976.
Hoare: Communicating Sequential Processes (CSP), (paper)
1978. Run multiple communicating guarded command sets in
parallel.
Hoare: CSP Book, 1985. Addition of channels to the model,
rather than directly talking to processes.
Cardelli and Pike: Squeak, 1983. Application of CSP model
to user interfaces.
Pike: Concurrent Window System, (paper) 1988. Application
of Squeak approach to systems software.
Pike: Newsqueak, 1989. Interpreted language; used to write
toy window system.
Winterbottom: Alef, 1994. True compiled concurrent
language, used to write production systems software.
Mullender: Thread library, 1999. Retrofit to C for general
usability.

3

Other models exist

Our approach is not the only way. There are many others;
here is a sampling:

Languages:
Occam
CCS
Esterel
Concurrent ML
Algol 68
Ada
Java

Techniques:
Fork/join
Semaphores
Asynchronous message passing
Condition Variables
RPC

4

Other models exist (2)

Packages:
POSIX and other Unix threads
RPC

Operating Systems:
Amoeba (Mullender & Tanenbaum)
V (Cheriton)
Topaz (Redell et al.)
Saguaro (Andrews)
SOS (Shapiro)

5

Notation

In this lecture, I will use a simplified notation (close to
Newsqueak) to concentrate on the ideas.

In the next lecture, Sape Mullender will introduce the notation
we will use to write the programs (in particular your exercises)
in this course.

6

Function to Process

Consider a function call
result = func(arg)

The computation that needsresult must wait until the
function completes before it can proceed.
What if it doesn’t need the answer yet? Want to be able to do
something like:

func(arg)
do something else whilefunc runs
when needed, use result; wait iffunc not done yet

This idea can be broken into three parts:
1. Starting the execution of a function while proceeding
one’s own calculation. (Process)
2. Retrieving values from functions/processes executing
independently of us. (Communication)
3. Waiting for things to complete. (Synchronization)

Of course, once we’ve separated the function’s execution, we
can run it remotely - RPC.

7

Process

Famously hard to define. Lampson: "A locus of points of
control." We’ll assume you know what one is, and worry
about details, not the big picture.

In our world, a process is a function, and the functions it calls,
executing with a private stack but global memory. (However,
our programming model will avoid the global memory
because it is unsynchronized.)

8

Function to Process, Part 2.

Four things to do with a function:
1. Call it. (Function call.)
2. Call it and let it run independently of us. (Process
creation;fork() in Unix terminology.)
3. Replace the current calculation by the function, like tail
recursion except that the function need not be the same:

double sin(double x)
{

return cos(x - PI/2.);
}

(Calledexec in Unix, become in Newsqueak.)
[Generalized return statement.]
4. A functionA can callB, and thenB can return to whereA
left off; thenA can return to whereB left off, etc. Not really
a call, but a combined call/resume. (Coroutines; Unix
pipelines and also operating system schedulers.) [Stack
switching.]

Our attention will concentrate on number 2.

9

Process management

To create a process, annotate a function call with abegin
keyword:

begin func(arg)

There is no return value from the function, and the arguments
are the best way to deliver information to the new process.
The next statement of the creating process will execute in
parallel with the first statement of the new process.

To terminate a process, two possibilities:
1. Return from the top-level function in the process.
2. Call an explicit implementation-defined process-
terminating function.

10

Communication channels

To communicate between processes, we usechannels ,
declared like this:

c: chan of int;

Now c is a channel that can pass integer values (only).
A channel may be created for any type:

c1: chan of array of int;
c2: chan of chan of int;

etc.

To send a value, we say:
c1 <-= val;

To receive the value again, we say:
x = <-c1;

<- is the communication operator: postfix for send, prefix for
receive.

Note that the same variable (c1) is used to send and to
receive.

11

Interlude: What is memory?

In our idealized model, memory is shared between processes.
A value may be passed between two processes using a
channel. However, there is no protection against multiple
processes changing a value simultaneously.

In our idealized model, references to memory may be shared
between processes, but again there is no protection against
multiple processes changing the referenced values
simultaneously.

Values on the stack are initially private to a process, but may
be passed to another process over a channel. References to the
stack are also private, but passing stack references between
processes has undefined semantics.

In the next lecture, we will see how these rules change in a
real implementation.

12

Synchronization

When a value is transmitted on a channel, the sending and
receiving processessynchronize: both most be at the right
point (the send or the receive statement) for the transfer to take
place.

If sending and no receiver, sender blocks until receiver
executes receive.
If receiving and no sender, receiver blocks until sender
executes send.

Note: process cannot send to itself because one process cannot
simultaneously execute a send and a receive.

This is called synchronous communication. We will see some
asynchronous communication later in the course.

Note that sending a value addresses bothcommunicationand
synchronization.

13

Other models of synchronization

Like recursion and iteration, various synchronization methods
are equivalent � any one can be built from any other � but
some are better for some problems, others for others. We
won’t dwell on them all here, but you should know some
names:

Semaphore

Spin lock

Queued lock

Condition variables

14

Multi-way sending: the select or alt statement

What if I wish to receive from either of two things
simultaneously? Use aselect (calledalt in Alef and the
thread library):

select{
case i = <-c1:

print("got ", i, " from c1\n");
case i = <-c2:

print("got ", i, " from c2\n");
}

Sends can also be used inselects , and sends and receives
can be mixed.

The definition ofselect is much like the definition of
Dijkstra’s guarded commands. The entireselect statement
blocks until one of the communications can proceed (has a
sender and a receiver). That communication then occurs, and
the associated statement executes.
If multiple cases are simultaneously executable, one is chosen
at random.

15

A simple example

run := prog(data: chan of array of char,
exit: chan of unit)

{
str: array of char;
for(;;)

select{
case str = <-data:

print("received", str, "\n");
case <-exit:

become unit; # return
}

};

data := mk(chan of array of char);
exit := mk(chan of unit);

begin run(data, exit);

data <-= "hello";
data <-= "world";
exit <-= unit;

16

Channels as capabilities

Channels are a little like file descriptors or capabilities. Given
a channel, we don’t know who’s at the other end (what file is
open) but we do know that we can read it to get some useful
information.

If that channel points to some service, it provides an interface
to that service, somewhat like a capability. We can hand the
channel to another process, and thereby give away access to
the service.

17

Example: prime sieve

Part of today’s exercise involves exploring this idea. Here, in
words, is the idea of the program, which exploits the concept
of using channels to represent sources of data.

Our goal is a program that prints primes. We observe that the
integers 2, 3, 4, ... could be the successive values read from a
channel. The first prime is the first integer in the series, 2.

Create a process to print that value, then pass along, on a
different channel, the integers that are non-zero modulo 2.
That is, the process copies the input stream to the output
stream, removing the numbers that are zero modulo 2.

The next prime is the first integer that emerges from the output
stream of the first process, 3. Create a process that prints that
number and passes the rest along, removing numbers that are
zero modulo 3.

The next prime is the first integer that emerges from the output
stream of the second process, 5....

18

Example continued

In other words, the program is a dynamic chain of processes,
each of which filters out values divisible by its prime.

2 3 4 ...23 5 7 ...35 7 11 ...57 11 13 ...

This is the concurrent programming version of the Sieve of
Eratosthenes, and your assignment is to implement it.

Notice the abstraction provided by channels as interfaces to
processes. This idea is central to concurrent programming as
we practice it.

19

Next: Concurrent programming in C

